U of T Scientists Find Lack of Fluid Flow in Glaucoma

Dec 21, 2018

University of Toronto researchers have shown that fluid which flushes out the eye’s optic nerve doesn’t flow properly in mice with glaucoma – one of the world’s leading causes of permanent blindness.

Professor Yeni Yucel; credit Yuri Markarov, St. Michael's HospitalProfessor Yeni Yucel; credit Yuri Markarov, St. Michael's Hospital

The researchers, ophthalmology professors Neeru Gupta and Yeni Yucel, and student Emily Mathieu, were the first to find, recently, that cerebrospinal fluid from the brain penetrates the optic nerve, rather than simply surrounding it. Now, the team has uncovered that in a glaucoma model, far less of this fluid enters the optic nerve than in mice without glaucoma.

“This casts an entirely new light on glaucoma,” said Gupta, who is Chief of Glaucoma at the Faculty of Medicine and a clinician-scientist at St. Michael’s Hospital. “If fluid is not getting into a nerve and that fluid exchange - good things getting in, bad things getting out - is disrupted, maybe that's part of the reason the optic nerve is damaged in glaucoma.”

Glaucoma is often undetected in its onset and once a patient receives the diagnosis, progressive vision loss is inevitable. The disease causes gradual degeneration of the optic nerve. While treatments help to protect vision, currently, there is no cure.

This is a puzzle the team have dedicated their research to solving. She and Yucel discovered nearly a decade ago that the eye has a lymphatic system, which clears fluid and waste out of tissues. The inability to clear fluid from the eye causes a buildup of pressure, and pressure is a major risk factor for glaucoma.

Professor Neeru Gupta; credit Yuri Markarov, St. Michael's HospitalProfessor Neeru Gupta; credit Yuri Markarov, St. Michael's Hospital

“There's much more to this disease than we would like to think,” Gupta says. “Right now, we are able to tackle pressure in the eye that's measureable. If we can drop it, we slow progression. It's not a cure.”

The current finding is the first step to a new body of research, says Yucel.

“Now that we know there’s a problem, we need to drill down to understand the elements of it. It may even explain space flight-associated neuro-ocular syndrome (optic nerve fluid shifts and vision impairment suffered by astronauts in space missions)” says Yucel, who is also a professor in the Department of Laboratory Medicine and Pathobiology.

Next, the team will explore why the flow is disrupted and what impact this has on the optic nerve.

“I see many people who are slowly losing their sight from glaucoma,” says Gupta. “Despite many of our treatments, it’s sometimes not enough. This discovery potentially offers new hope. As long as we keep looking, there’s hope for a better future for our glaucoma patients.”

--Ana Gajic and Heidi Singer

Feb 28 – Mar 29
Leading Transformation: Building Adaptive Capacity - Advanced Learning Program at IHPME
Course | 8:30am–5:00pm
Mar 25 RSI Speaker Series: Women and Brain Health
Other | 11:00am–12:00pm
Mar 26 Implementing Innovations
Workshop/Seminar | 5:00pm–7:00pm
Mar 27 1st Annual REC-Amend Symposium: Accessible BIPOC Mental Health Services
Symposium | 5:30pm–8:30pm
Apr 3 WebPac Training
Workshop/Seminar | 2:00pm–3:30pm
4 – 6
59th Annual Program for Practising Surgeons Update in General Surgery
Conference | 7:00am–5:30pm
Apr 4 19th Toronto Breast Surgery Symposium
Symposium | 7:15am–5:00pm


UofT Medicine
Iron deficiency in pregnancy can cause a multitude of problems. Prof & team developed a tool to… https://t.co/Q9powsk9IP
UofT Medicine
Robots in the OR: medical experts weigh in on robot-assisted surgery and what it means for healthcare https://t.co/E65B96Ypoq
UofT Medicine
Got an idea for a start-up? Entrepreneurs & their early-stage startups at will soon have access to a new fina… https://t.co/ormVuM2rMI

UofTMed Magazine

Have we lost the art of dying?

Sign up for your free digital copy.
Back to Top