No Air, No Problem: U of T Researchers Identify Molecular Switch Allowing Parasites to Survive Inside Hosts Without Oxygen

Aug 4, 2020
Author: 
Jovana Drinjakovic
Portraits of postdoctoral fellow June Tan, professor Andy Fraser and senior PhD student Margot Lautens.

Unique molecular mechanics allowing parasites to thrive in the guts of one billion people open the door to new treatments that are safe for the host.

Around one billion people on the planet are infected with parasitic helminths, round worms that live in soil and colonize human guts through dirty water. The helminths owe their ability to survive in the low oxygen environment of the human gut to a unique enzyme variant, U of T researchers have found.

The findings raise hopes of new treatments to quell growing resistance of parasites to available medications. Infections are common in less developed countries where they can leave long-lasting consequences on child development.

“When parasites are outside the body, which they are for a part of their lifecycle, they breathe oxygen just like we do,” says Andrew Fraser, a senior author and a professor of molecular genetics in the Donnelly Centre for Cellular and Biomolecular Research at U of T’s Faculty of Medicine. “We were trying to understand how these parasites survive inside the human gut where there’s almost no available oxygen.”

The study was also co-led by Gustavo Salinas, a professor at Universidad de la República in Uruguay, and Jennifer Shepherd, a professor at Gonzaga University in the U.S.

The findings have been published in e-Life, an online journal for life-sciences.

Most animals, including humans, rely on a molecule called ubiquinone (UQ) to transfer electrons to oxygen in the process of making energy. But when parasitic helminths inhabit their hosts, they switch to an unusual type of anaerobic metabolism that uses another electron carrier, rhodoquinone (RQ).

In a previous study, Fraser’s team uncovered that UQ and RQ are made from different precursor molecules by the same enzyme called COQ2. But how does COQ2 know to use the UQ precursor when there’s oxygen around but use the RQ precursor when there’s no oxygen?

“Somehow there has to be a switch,” says Fraser. “If we could understand how that switch works and if we could take a small compound and interfere with that switch, prevent it from making RQ, that might be a way to kill a parasite in humans.”

First clues emerged when Michael Schertzberg, a research technician in the lab, noticed that helminths produce two protein variants of COQ2. The variants are made by alternative splicing, a process through which gene coding segments, or exons, are variably included into templates for protein synthesis, allowing for diverse proteins to be encoded by the same gene. The two COQ2 variants are identical but for a small part encoded by two mutually exclusive exons, dubbed A and E. These are exactly the same size — flipping from the A variant to the E variant is like switching a block in a complicated Lego structure.

The researchers next engineered C.elegans worm strains producing either enzyme variant alone to test their ability to make UQ and RQ. Although not a parasite, C elegans is a highly related helminth that also uses rhodoquinone. They found that the worms lacking the E variant lost their ability to make RQ and could no longer survive without oxygen.

Genome scanning across diverse animal lineages further strengthened the idea that the E variant makes life without oxygen possible. The E variant is not even encoded in the COQ2 gene of most animals, including humans, who need air to live. It is only found in helminths and a few other species known to make RQ, such as oysters and other marine organisms, where it is likely an adaptation to low oxygen levels during low tide.

Importantly, when they looked at the parasitic helminths Ascaris and Strongyloides stercoralis, they found that they also make and switch to the E variant when they are inside the host.

June Tan, a lead co-author and an expert in alternative splicing, has rarely seen in helminths two alternatively spliced variants with such distinct functions, like flipping a switch.

“For me the most surprising finding was how restricted the E variant was to just those species that make RQ,” says Tan, who is a postdoctoral fellow the lab.

“We think alternative splicing switches the enzyme core around the catalytic site so that it allows them to use a different precursor molecule to make RQ versus UQ.”

When Margot Lautens, a PhD student in the lab, computationally laid each variant over the reference molecular structure of the enzyme, she indeed found that the A and E exons encode a core segment which is crucial for the catalytic activity. The researchers think that when oxygen levels dip, the enzyme flips its inner core from the prevalent A form to the less common E form which can make RQ and sustain a parasite’s life.

The finding opens a therapeutic opportunity to specifically target the enzyme in the parasite without touching its counterpart in the host.

“If you look at the A form of COQ2, it looks the same in every animal. An inhibitor would act on human too,” says Fraser.

“But the E variant has key differences and you could target just that form. This gives us a beautiful way to help us find inhibitors that will hit specifically the E form and that’s what we’re doing now.”

The research was supported by funding from the Canadian Institutes for Health Research and Agencia Nacional para la Innovación y la Investigación ANII in Uruguay.

Tweets

Temerty Medicine
@uoftmedicine
RT : 1/4 key concerns in 🇨🇦: the continuing increase in daily case counts nationally together with increased ho… https://t.co/lJcrutpXjD
Temerty Medicine
@uoftmedicine
Some concerns are being raised about privately-offered paid COVID-19 tests that can be taken at home. Is this makin… https://t.co/tp6RFfS2Qh

Researchers are mobilizing against the novel SARS-CoV-2 coronavirus and COVID-19.

Make a gift and support their important work.
Sep 23 – Nov 11
Safer Opioid Prescribing
Course | 7:00am–9:00pm
Sep
23 – 26
2020 Young Investigator Forum
Symposium | 8:00am–4:00pm
Sep 26 Multidisciplinary Care in IBD (MCIBD) 2020 - Strength Through Shared Knowledge
Conference | 9:00am–1:30pm
Oct
2 – 3
Demystifying Neurology for the Non-Neurologist
Conference | 7:30am–3:15pm
Oct 5 – May 6
Academic Health Leadership Training – Now Accepting Applications 2020-2021 Cohort
Course | 8:00am–5:00pm
Oct 7 Medical Record-Keeping
| 8:30am–4:30pm
Oct 13 – Jun 8
Certificate Program in CPD Foundations
Course | 12:00pm–1:30pm