Most Engineered Nanoparticles Enter Tumours Through Cells, Not Between them, U of T Researchers Find

Jan 13, 2020
Qin Dai and Jim Oldfield

Jessica Ngai, Dr. Shrey Sindhwani, Dr. Abdullah Syed and Benjamin KingstonJessica Ngai, Dr. Shrey Sindhwani, Dr. Abdullah Syed and Benjamin Kingston
University of Toronto researchers have discovered that an active rather than passive process dictates which nanoparticles enter solid tumours, upending decades of thinking in the field of cancer nanomedicine and pointing toward more effective nanotherapies.

The prevailing theory in cancer nanomedicine — an approach that enables more targeted therapies than standard chemotherapy — has been that nanoparticles mainly diffuse passively into tumours through tiny gaps between cells in the endothelium, which lines the inner wall of blood vessels that support tumour growth.

The researchers previously showed that less than one per cent of nanoparticle-based drugs typically reach their tumour targets. In the current study, they found that among nanoparticles that do penetrate tumours, more than 95 per cent pass through endothelial cells — not between gaps among those cells.

“Our work challenges long-held dogma in the field and suggests a completely new theory,” says Abdullah Syed, a co-lead author on the study and postdoctoral fellow in the lab of Warren Chan, a professor at the Institute of Biomaterials and Biomedical Engineering and the Donnelly Centre for Cellular and Biomolecular Research.

“We saw many nanoparticles enter the endothelial cells from blood vessels and exit into the tumour in various conditions. Endothelial cells appear to be crucial gatekeepers in the nanoparticle transport process.”

The solid arrows indicate that nanoparticles (dark spots) are engulfed by endothelial cells instead of passing through gaps between the cells.The solid arrows indicate that nanoparticles (dark spots) are engulfed by endothelial cells instead of passing through gaps between the cells. The journal Nature Materials published the findings today.

Syed compares nanoparticles to people trying to get into popular restaurants on a busy night. “Some restaurants don’t require a reservation, while others have bouncers who check if patrons made reservations,” he says. “The bouncers are a lot more common than researchers thought, and most places only accept patrons with a reservation.”

The researchers established that passive diffusion was not the mechanism of entry with multiple lines of evidence. They took over 400 images of tissue samples from animal models, and saw few endothelial gaps relative to nanoparticles. They observed the same trend using 3D fluorescent imaging and live-animal imaging.

Similarly, they found few gaps between endothelial cells in samples from human cancer patients.

The group then devised an animal model that completely stopped the transportation of nanoparticles through endothelial cells. This allowed them to isolate the contribution of passive transport via gaps between endothelial cells, which proved to be miniscule.

The researchers posit several active mechanisms by which endothelial cells might transport nanoparticles into tumours, including binding mechanisms, intra-endothelial channels and as-yet undiscovered processes, all of which they are investigating.

Meanwhile, the results have major implications for nanoparticle-based therapeutics. “These findings will change the way we think about delivering drugs to tumours using nanoparticles,” says Shrey Sindhwani, also a co-lead author on the paper and an MD/PhD student in the Chan lab. “A better understanding of the nanoparticle transport phenomenon will help researchers design more effective therapies.”

The research included collaborators from the Department of Physics (University of Toronto), Cold Spring Harbor Laboratory (New York, USA) and the University of Ottawa. The study was funded by the Canada Research Chairs Program, Canadian Cancer Society, Natural Sciences and Engineering Research Council, and Canadian Institutes of Health Research.


UofT Medicine
RT : The only Black student in her class four years ago, 's Chika Oriuwa became an advocate for diversity in her fi…
UofT Medicine
RT : -19 has amplified inequities in access & supports. These have real negative consequences for pat…
UofT Medicine
COVID-19's intensified our need for national pharmacare, says ’s . “Implementing universal, nati…

Researchers are mobilizing against the novel SARS-CoV-2 coronavirus and COVID-19.

Make a gift and support their important work.
May 27 PGME Global Health Day 2020
Symposium | 1:00pm–6:00pm
29 – 30
RTi3 Conference 2020
Conference | 8:00am–5:00pm
May 30 15th Annual Arthritis Day for Primary Care Clinician
Conference | 7:45am–3:45pm
Jun 3 WebPac Training
Workshop/Seminar | 3:00pm–5:00pm
9 – 11
Teaching for Transformation: Summer Education Institute (SEI) program
Other | 9:00am–5:00pm
11 – 12
Target Insight 2020 -- Big Data: A Paradigm for Change
Conference | 8:30am–5:00pm
Jun 12 Medical Record-Keeping
Workshop/Seminar | 8:30am–4:30pm